

© 2020 – Talos Interactive

Server Administration Plugin UE 4.26

CONTENTS

Contents ... 1

1. Foreword .. 2

2. UProject & Build Files ... 2

Uproject .. 2

ShooterGame.Build.cs .. 2

3. Preparing your Game Classes ... 3

Events ... 3

ShooterGameMode.h ... 3

ShooterGameMode.cpp ... 3

ShooterGameState.H .. 4

ShooterGameState.cpp .. 5

Optional: ShooterGameInstance .. 5

Blueprint functions and delegates ... 6

BP_Gameinstance .. 7

BP_GameState .. 7

Game Mode and .ini settings ... 9

4. Calling the Server Admin menu in your game .. 9

5. Configuration .. 10

© 2020 – Talos Interactive

1. FOREWORD

This guide will demonstrate the setup of the Server Admin plugin and shows you where in your

game’s code and Blueprints it needs to be integrated to make full use of its functionality. We are

going to be using the ShooterGame code as an example. So, wherever a ShooterGame class is

changed in this guide, make these same changes to your corresponding game classes.

The fully prepared version of ShooterGame is available for download on the server admin plugin

page, too, if you desire to look at the code there.

2. UPROJECT & BUILD FILES

UPROJECT

Let’s start by installing the plugin to your engine, which is done via the Epic launcher. Once that’s

done, you might want to move it to the GitHub version of the engine. This is not strictly needed but a

requirement for building dedicated servers, so you might end up taking that step anyway.

After installing it, it is available to the engine but needs to be referenced by your project. Open your

uproject file and add the following lines to the plugins list, right below Gauntlet in our example:

Alternatively, you can add the plugin through the plugins dialogue in UE4.

Note: You do not need line 78 with the MarketPlaceURL if you are adding

this definition manually.

SHOOTERGAME.BUILD.CS

In the ShooterGame build file in line 33, add the following line to the

PublicDependencyModuleNames: "TIServerAdmin".

© 2020 – Talos Interactive

3. PREPARING YOUR GAME CLASSES

Depending on the type of game you want to add this plugin to, you’ll want to expose some of your

game’s functionality, so the plugin has access to your game logic.

EVENTS

For the plugin to know what is happening in your game, some game specific logic needs to be setup

to call the plugin’s functions, such as the Event that requests the next map, or records a team kill for

the TK punishment measures to kick in. In this guide, this will be achieved by adding the required

hooks in the form of Blueprintable Events into the game mode of ShooterGame.

SHOOTERGAMEMODE.H

We cannot easily call the plugin functions from ShooterGame’s code directly, as that would create

build dependencies between the project and the plugin that go against the idea of the UE4 plugin

architecture.

So, at the ShooterGameMode header’s bottom, add the three shown function declarations, which

will provide is with three Blueprint Event nodes once we compile the example game.

Second, add two more function declarations, as shown below. They’re the Blueprint Getter and

Setter for the game mode’s round time and make this variable read/write accessible via BP. Without

them, neither the plugin, nor your BP_GameMode can see or modify it.

SHOOTERGAMEMODE.CPP

In the ShooterGameMode class, we will implement the calls to the Events that we defined earlier.

1. In ::DefaultTimer(), line 138, replace the function call RestartGame() with OnNextMap()

© 2020 – Talos Interactive

2. In the ::Killed() function, near line 310, implement the call OnTeamKill(), if both the Killer’s and

Killed’s team are identical.

3. Go to the ::CanDealDamage() function and enhance it with the code shown below. These few lines

are checking whether team kills are enabled and returns the appropriate value based on the result.

This is where the GetTeamKillsEnabled() call comes into play. In our example, it will go to the

GameMode blueprint and query the TIServerAdmin game mode component for the setting’s value.

4. Below the three events, let’s add the function that modifies the GameMode’s round time:

5. Something worth noting in this class still is, that the DefaultTimer() function, the GameMode’s tick

does not run fully in the editor. So, if you were to test the plugin in the editor, you’d get the game

stuck. To remedy this, locate line 93 and comment out the return; call.

SHOOTERGAMESTATE.H

In the ShooterGameState, we need to make the RemainingTime BP read/write accessible, so the

plugin can modify those via BP. This can be achieved purely in C++, too, but would require casting to

Game Classes which may or may not exist in your game, so we’ll go the BP route instead here.

Declare the Getter and setter for the RemainingTime variable, as we did above for the RoundTime.

© 2020 – Talos Interactive

SHOOTERGAMESTATE.CPP

And now the corresponding function:

OPTIONAL: SHOOTERGAMEINSTANCE

If you are not using ShooterGame’s slate UI implementation, but went with UMG instead, the Server

Admin plugin offers an interface function to call UMG UI in the case of a new Admin Message. This is

an optional implementation shown below.

Note, if you stick with Slate and implement this function below, too, you may end up with overlapping

UI elements.

The game instance is the only class that we cannot add a Blueprint component to, so instead we will

use an interface to call the TIServerAdmin functions. You only need to include the interface’ header,

as the interface itself is implemented in the TIServerAdmin class that it’s called on.

To continue the optional implementation we started above, locate the ::BeginMessageMenuState()

function around line 800. Add the code below, to call the interface function described above. This will

call the interface implemented in the ServerAdmin game instance, if you chose to go with that one or

the BP interface function that will be described further down the line.

This concludes the work needed in C++ and we can move on to the Blueprints portion of this guide. At

this point, the plugin should be implemented fully and your project compiles and launches.

© 2020 – Talos Interactive

BP_GAMEMODE

The last step of exposing game functions to the plugin is to make the three Events we defined in the

GameMode class earlier work in Blueprint.

Two of the Events go into the Event Graph and call two functions in the plugin, which is done as

shown below:

And the third Event, which has a return value is a function override, which you can add by clicking the

Override button in the functional panel of your GameMode Blueprint:

And choosing GetTeamKillsEnabled. With that function overridden, go ahead and read the plugin’s

TeamKillsEnabled variable value for the return value:

This concludes the work that is needed to expose the ShooterGame default functionality to BP for the

plugin to hook into it.

© 2020 – Talos Interactive

BLUEPRINT FUNCTIONS AND DELEGATES

Now we start hooking the plugin back into your game by interfacing several of the plugin functions

with your game code. Let’s get started by creating three blueprints:

1. BP_GameMode: Inherits from the ShooterGameTeamDeathMatch game mode

2. BP_GameState: Inherits from ShooterGameState

3. BP_GameInstance: Inherits from BP_TIServerAdminGameInstance

4. BP_PlayerController: Inherits from ShooterGamePlayerController

When those are done, add the Blueprint ServerAdmin components to each:

1. BP_GameMode: Add the BP_TIServerAdminGameMode_Component to it

2. BP_GameState: Add the BP_TIServerAdminGameState_Component to it

3. BP_PlayerController: Add the BP_TIServerAdminActor_Component to it

Note: If you prefer to have your implementation done in C++, this is also possible. You’ll have to

take the steps described here in BP in C++ instead and create delegates that do the work.

BP_GAMEINSTANCE

You might have noticed that BP_GameInstance has no component and that its parent,

BT_TIServerAdminGameInstance has ShooterGameInstance as parent.

The reason for this is, that the GameInstance is the only class that we cannot enhance with a

component, neither in C++ nor in BP. So, we need to have a TIServerAdmin game instance class that is

layered between ShootergameInstance and your own BP_GameInstance.

Note: You could work with the BP_TIGameInstance class in your project directly. That is an option, but

opens your project up for conflicting changes in future updates of the TIServerAdmin plugin.

If you prefer to use C++ here, too, the plugin offers a ServerAdminGameInstance C++ class that is

identical with the Blueprint version.

BP_GAMESTATE

In the BP_GameState, we’ll hook up an interface that gets called by the server admin plugin. It’s

responsible for getting and setting the remaining time and round timer.

To do this, open the Blueprint class and go to the class settings, which will open the settings panel.

There, add the ServerAdmin Game State Interface:

This will add four functions, as shown below:

© 2020 – Talos Interactive

Now, to implement the four functions. This is where the C++ getters and setters we made earlier

come into play.

The two setters are implementable Events in the EventGraph of the BP_GameState class. Add them

as shown below:

The two getters are functions instead, as they return a value. First, the Round Time setter:

And then the Remaining time setter:

© 2020 – Talos Interactive

GAME MODE AND .INI SETTINGS

Last but not least, your BP_GameMode class settings need to be modified to use the newly created

BP classes, as shown here:

• GameState is set to BP_GameState

• PlayerController is set to

BP_PlayerController

• In your game settings, make sure

BP_GameMode is the new default, or

set in the world override of the map you want to test this in.

• Finally, in the DefaultGame.ini, replace the PlatformPlayerControllerClass in line 9 and the

GameInstance class in the DefaultEngine.ini in line 221.

4. CALLING THE SERVER ADMIN MENU IN YOUR GAME

This last step will show you how to call the TIServerAdmin UMG menu. This implementation is “quick

and dirty” and it is strongly encouraged to integrate it into your own in-game menu structure

instead. However, for a proof of concept the following will do.

Let’s open ShooterGame’s PlayerPawn Blueprint and add this bit of logic:

Grab the Pawn’s Controller, cast it to the PlayerController class and then place a CreateWidget node.

In the Create Widget node, reference BP_ServerAdmin_UI as class.

This logic will create and open the TIServerAdmin menu when you press the key “M” while you are

playing in game.

Important note: This plugin is made for a server-client environment. Make sure to tick the “Run

Dedicated Server” checkbox when testing the functionality in the editor!

© 2020 – Talos Interactive

5. CONFIGURATION

Now, with all the logic done, it’s time to configure the GameMode.ini to store the TIServerAdmin

configuration. This is where your game’s server owners will be able to create their own

configurations, prior to using the plugin.

Note: In one of the future releases, the plugin will get its own configuration file, but for the time

being, it’s using the game.ini.

1. The first entries are the server admins’ UniqueNetIDs. In the case of using the Steam

subsystem they are the 64bit version of the player’s SteamIDs

2. The second entry is the optional password. Keep in mind three things:

a. The password method is only active if no Admin IDs are defined, otherwise it’s

inactive

b. The password is transmitted unencrypted, so it’s potentially unsafe and it’s highly

recommended to only use it in networks that you trust.

c. Providing neither a password nor Steam IDs will make the TIServerAdmin controls

accessible to any player in your server. This is useful for debug purposes but should

not be used on a public server.

3. The third, fourth and fifth entry are the setting for the TeamKill feature being enabled, the TK

limit beyond which the punishment kicks in, the type of punishment and the TK counter

decay per minute.

4. The Maps path defines the location on your server, where the plugin should look for maps to

display as options to switch to. Note, the plugin does not check folders recursively.

5. The Excluded maps list holds all maps and sublevels that you do not want to show up in the

map selection.

6. And last but not least, your server’s map rotation is defined at the bottom. The server will

indefinitely loop through those maps.

