Server Administration Plugin UE 4.26

CONEENTS 1.t a et st s s s a e s a e s 1
Lo FOT@WOI ..ttt s bt st ettt e s bt e she e sae e e at e et e e bt e sbeesaeesan e st e ebe e reennees 2
2. UPrOJECE & BUIIA FIlES ..ueeiieiiieiieiiiee ettt ettt ettt e e st e e s st e e s snbe e e s e nbeeeesnreeesennnes 2
6] o] [T ol SO T PP P PP SPPRTPPPPT 2
ShOOTEIrGAME. BUIIA.CS ...ttt st st st e b e b e e sbeesaeesare e 2
3. Preparing YOUI GAmE ClaSSES......uuiiiiiiiiieeiiieeeeiiteeeesiteeeestteeeeeitseeeseateeeesstaeeeastaeesassesasesseneeennsens 3
BV NTES e s e e s e s 3
ShOOTErGAMEMOTE. N ... et s s e s s sane e 3
N g[oTe1d=T L CT:TaqT=11Y [o [SHof oY o P PPTURPPS 3
ShOOTEIrGAMESTATE. H. ...t esare e 4
N ool u=T L G- g TR = L (T o o) o USRS)
Optional: SNOOTErGAMEINSTANCEcccviiie ittt ettt e e e et e e ebte e e e e ate e e e eetteeeeebteeesestaeeesstanaesnns)
Blueprint functions and deIEEATESc.c.veii e et ree e e e ares 6
BP _GAMEINSTANCE ..evviiiiiiiiiiiiittte ettt e ettt e e e e e s sttt e e e e e s s s tbbeeaeeeesssaabtbeaeeeeesesannsraaaeeeesnns 7
B P G A O S AT . s 7
Game Mode and .ini SETEINGSvveiiiiiiee e e et e et e e e st a e e e srraeeeeaes 9
4. Calling the Server AdmMin MENU iN YOUI SaME.......uiiiiiiiieeeeiieeeeeieeeeeeitteeeeeteee e eereeeeeenbeeeeeeaeeeeeensees 9
L 0010 7= (U= 4 o o VPSSP 10

© 2020 - Talos Interactive

This guide will demonstrate the setup of the Server Admin plugin and shows you where in your
game’s code and Blueprints it needs to be integrated to make full use of its functionality. We are
going to be using the ShooterGame code as an example. So, wherever a ShooterGame class is
changed in this guide, make these same changes to your corresponding game classes.

The fully prepared version of ShooterGame is available for download on the server admin plugin
page, too, if you desire to look at the code there.

UPROJECT

Let’s start by installing the plugin to your engine, which is done via the Epic launcher. Once that’s
done, you might want to move it to the GitHub version of the engine. This is not strictly needed but a
requirement for building dedicated servers, so you might end up taking that step anyway.

After installing it, it is available to the engine but needs to be referenced by your project. Open your
uproject file and add the following lines to the plugins list, right below Gauntlet in our example:

Alternatively, you can add the plugin through the plugins dialogue in UE4.

72 “"Name": "Gauntlet",

73 "Enabled": true

74 1,

75 v

76 "Name": "TIServerAdmin",

77 "Enabled": true,

78 |"Mar'ketplaceURL": "com.epicgames.launcher://ue/marketplace/content/7d3b7754dab44cdebf57eeb926f0cc1l"”

Note: You do not need line 78 with the MarketPlaceURL if you are adding
this definition manually.

SHOOTERGAME.BUILD.CS

In the ShooterGame build file in line 33, add the following line to the
PublicDependencyModuleNames: "TIServerAdmin".

26 PublicDependencyModuleNames . AddRange (
27 new string[] {

28 "Core",

29 "CorelUObject",

38 "Engine",

31 "OnlineSubsystem”,

32 "OnlineSubsystemUtils",
33 "AssetRegistry",

34 "NavigationSystem",

BE "AIModule",

36 "GameplayTasks",

37 "Gauntlet”,

38 "TIServerAdmin",

39 }

© 2020 — Talos Interactive

Depending on the type of game you want to add this plugin to, you’ll want to expose some of your
game’s functionality, so the plugin has access to your game logic.

EVENTS

For the plugin to know what is happening in your game, some game specific logic needs to be setup
to call the plugin’s functions, such as the Event that requests the next map, or records a team kill for
the TK punishment measures to kick in. In this guide, this will be achieved by adding the required
hooks in the form of Blueprintable Events into the game mode of ShooterGame.

SHOOTERGAMEMODE.H

We cannot easily call the plugin functions from ShooterGame’s code directly, as that would create
build dependencies between the project and the plugin that go against the idea of the UE4 plugin
architecture.

So, at the ShooterGameMode header’s bottom, add the three shown function declarations, which
will provide is with three Blueprint Event nodes once we compile the example game.

162 EE // ServerAdmin

163 // Event for when a match is over and the next map needs determining
164 _ UFUNCTION(BlueprintImplementableEvent, Category = "GameMode™)

lBS‘f : void OnNextMap();

166 .

167 E // Blueprint getter for reading the value of the Game Mode component's TK setting
168 UFUNCTION(BlueprintImplementableEvent, Category = "GameMode™)

169 bool GetTeamKillsEnabled() const;

170 :

171 i // Event for when a team kill occurred

172 : UFUNCTION(BlueprintImplementableEvent, Category = "GameMode™)

173 i void OnTeamKill(AController* Killer);

174

Second, add two more function declarations, as shown below. They’re the Blueprint Getter and
Setter for the game mode’s round time and make this variable read/write accessible via BP. Without
them, neither the plugin, nor your BP_GameMode can see or modify it.

177 i

178 // Getter for the roundtime

179 ' UFUNCTION(BlueprintPure, Category = “"GameMode")
180 float GetRoundTime() { return RoundTime; };

181 j

182 // Setter for the roundtime

183 UFUNCTION(BlueprintCallable, Category = "GameMode")
184 ' void SetRoundTime(float NewRoundTime);

185 1:

SHOOTERGAMEMODE.CPP

In the ShooterGameMode class, we will implement the calls to the Events that we defined earlier.

1. In::DefaultTimer(), line 138, replace the function call RestartGame() with OnNextMap()

101 FL| if (MyGameState->RemainingTime <= @)

102 | ' {

103 El: if (GetMatchState() == MatchState::WaitingPostMatch)
104 I |

105 © 0 OnNextMap();

106 I

© 2020 — Talos Interactive

2.

In the ::Killed() function, near line 310, implement the call OnTeam(Kill(), if both the Killer’s and
Killed’s team are identical.

310 E E // Call the ServerAdmin parent function to increase the TK Counter

311 | E if (KillerPlayerState->GetTeamNum() == NictimPlayerStatd—>GetTeamNum(}}
312 OnTeamKill(Killer);

313 b

Go to the ::CanDealDamage() function and enhance it with the code shown below. These few lines
are checking whether team kills are enabled and returns the appropriate value based on the result.
This is where the GetTeamKillsEnabled() call comes into play. In our example, it will go to the

GameMode blueprint and query the TIServerAdmin game mode component for the setting’s value.
514 Ebool ARnLGameMode: :CanDealDamage(class ARnLPlayerState* Damagelnstigator, class ARnLPlayerState* DamagedPlayer) const

515

516 i // Check whether team kills are enabled in the server admin settings

517 ' const bool TeamKillsEnabled = GetTeamKillsEnabled();

518 |

519 E if (DamagedPlayer && DamageInstigator && DamageInstigator->GetTeam() == DamagedPlayer->GetTeam() && !TeamKillsEnabled)
520 : return false;

521 ;

522 : return true;

523 }

Below the three events, let’s add the function that modifies the GameMode’s round time:

£

=void AShooterGameMode: : SetRoundTime(float NewRoundTime)
77 {
if (NewRoundTime >= 8.8f)

RoundTime = NewRoundTime;

[V, W, W, W, W, RV, RV |

Something worth noting in this class still is, that the DefaultTimer() function, the GameMode’s tick
does not run fully in the editor. So, if you were to test the plugin in the editor, you’d get the game
stuck. To remedy this, locate line 93 and comment out the return; call

85 | // don"t update timers for Play In Editor mode, it's not real match
86 =H if (GetWorld()->IsPlayInkditor())

87 {

88 // start match if necessary.

89 EIR if (GetMatchState() == MatchState::WaitingToStart)

o {

1 StartMatch();

2 }

//return;

4
-

SHOOTERGAMESTATE.H

In the ShooterGameState, we need to make the RemainingTime BP read/write accessible, so the

plugin can modify those via BP. This can be achieved purely in C++, too, but would require casting to

Game Classes which may or may not exist in your game, so we’ll go the BP route instead here.

41
42
43
44
45
46
47
48
49

3

T wm oy
-

I N

=2 LI FHELLLLEELCEEELA TR LT LTI LT i

THETEELE T FELEL TR T R EERLLATEL LT TR TE T EL LD F LR
// Getter for the remaining time in a round
UFUNCTION(BlueprintPure, Category = “"GameState")

float GetRemainingTime() { return RemainingTime; };

// Setter for the remaining time in a round
UFUNCTION(BlueprintCallable, Category = “"GameState™)
void SetRemainingTime(float NewRemainingTime);

Declare the Getter and setter for the RemainingTime variable, as we did above for the RoundTime.

© 2020 — Talos Interactive

SHOOTERGAMESTATE.CPP

And now the corresponding function:

Evoid AShooterGameState: :SetRemainingTime(float NewRemainingTime)
{
if (NewRemainingTime »>= @)
RemainingTime = NewRemainingTime;

OPTIONAL: SHOOTERGAMEINSTANCE

If you are not using ShooterGame’s slate Ul implementation, but went with UMG instead, the Server
Admin plugin offers an interface function to call UMG Ul in the case of a new Admin Message. This is
an optional implementation shown below.

Note, if you stick with Slate and implement this function below, too, you may end up with overlapping
Ul elements.

The game instance is the only class that we cannot add a Blueprint component to, so instead we will
use an interface to call the TIServerAdmin functions. You only need to include the interface’ header,
as the interface itself is implemented in the TIServerAdmin class that it’s called on.

E#include "ShooterGame.h™

8 #include “ShooterGameInstance.h™

S #include “ShooterMainMenu.h™

10 #include “ShooterWelcomeMenu.h™

11 #include "ShooterMessageMenu.h"

12 #include "ShooterGamelLoadingScreen.h™

13 #include "OnlineKeyValuePair.h"

14 #include “"ShooterStyle.h"

15 #include "ShooterMenuItemWidgetStyle.h™

16 #include "ShooterGameViewportClient.h"

17 #include "Player/ShooterPlayerController Menu.h™
18 #include "Online/ShooterPlayerState.h"

19 #include "Online/ShooterGameSession.h"

20 #include "Online/ShooterOnlineSessionClient.h™
21 #include "OnlineSubsystemUtils.h"

22 I “#include *TIServerAdminIGameInstance.h”

23

To continue the optional implementation we started above, locate the ::BeginMessageMenuState()
function around line 800. Add the code below, to call the interface function described above. This will
call the interface implemented in the ServerAdmin game instance, if you chose to go with that one or
the BP interface function that will be described further down the line.

fx

&
[

© Server Admin: Optional, Send the new message to the Game Instance Blueprint or class
“ where it can be received via this interface call and displayed
© in case you chose not to use ShooterGame's Slate UI implementation but UMG instead

=

»
*
*
2 /
= if (GetClass()->ImplementsInterface(USAIGameInstance::StaticClass()))
I

ISAIGameInstance: :Execute_OnNewAdminMessage(this, PendingMessage.DisplayString,
Pendingt‘lessage.OKButtonString, PendingMessage.CancelButtonString, PendingMessage.NextState);

i

|

00 CO 00 00 00 00 00 OO 0O G O
BRERERREERB S

0~ O

This concludes the work needed in C++ and we can move on to the Blueprints portion of this guide. At
this point, the plugin should be implemented fully and your project compiles and launches.

© 2020 — Talos Interactive

BP_GAMEMODE

The last step of exposing game functions to the plugin is to make the three Events we defined in the
GameMode class earlier work in Blueprint.

Two of the Events go into the Event Graph and call two functions in the plugin, which is done as
shown below:

f Determine Next Map
€ Event On Next Map L) Target is TIServer Admin Game Mode Component
»pb—-> o
— @ Target
- i
BP TiServer Admin Game Mode Component @+ !
f Team Kill
€ Event On Team Kill) Target is TIServer Admin Game Mode Component
P> C
Killer @ —_ @ Target
) ® Killer

p=
BP TIServer Admin Game Mode Component @

And the third Event, which has a return value is a function override, which you can add by clicking the
Override button in the functional panel of your GameMode Blueprint:

4 Functions (33 Ove Overridew < Function

And choosing GetTeamKillsEnabled. With that function overridden, go ahead and read the plugin’s
TeamKillsEnabled variable value for the return value:

¥ Get Team Kills Enabled ¥ Return Node
»P—>D

Return Value

7
BP TIServer Admin Game Mode Component @ — @ Target Team Kills Enabled

This concludes the work that is needed to expose the ShooterGame default functionality to BP for the
plugin to hook into it.

© 2020 — Talos Interactive

BLUEPRINT FUNCTIONS AND DELEGATES

Now we start hooking the plugin back into your game by interfacing several of the plugin functions
with your game code. Let’s get started by creating three blueprints:

BP_GameMode: Inherits from the ShooterGameTeamDeathMatch game mode
BP_GameState: Inherits from ShooterGameState

BP_Gamelnstance: Inherits from BP_TIServerAdminGamelnstance

4. BP_PlayerController: Inherits from ShooterGamePlayerController

wnN e

When those are done, add the Blueprint ServerAdmin components to each:

1. BP_GameMode: Add the BP_TIServerAdminGameMode_Component to it
2. BP_GameState: Add the BP_TIServerAdminGameState_Component to it
3. BP_PlayerController: Add the BP_TIServerAdminActor_Component to it

Note: If you prefer to have your implementation done in C++, this is also possible. You’ll have to
take the steps described here in BP in C++ instead and create delegates that do the work.

BP_GAMEINSTANCE

You might have noticed that BP_Gamelnstance has no component and that its parent,
BT_TIServerAdminGamelnstance has ShooterGamelnstance as parent.

The reason for this is, that the Gamelnstance is the only class that we cannot enhance with a
component, neither in C++ nor in BP. So, we need to have a TIServerAdmin game instance class that is
layered between Shootergamelnstance and your own BP_Gamelnstance.

Note: You could work with the BP_TIGamelnstance class in your project directly. That is an option, but
opens your project up for conflicting changes in future updates of the TIServerAdmin plugin.

If you prefer to use C++ here, too, the plugin offers a ServerAdminGamelnstance C++ class that is
identical with the Blueprint version.

BP_GAMESTATE

In the BP_GameState, we'll hook up an interface that gets called by the server admin plugin. It’s
responsible for getting and setting the remaining time and round timer.

To do this, open the Blueprint class and go to the class settings, which will open the settings panel.
There, add the ServerAdmin Game State Interface:

4 Interfaces

4 |mplemented Interfaces
Server Admin Game State Interface ®

This will add four functions, as shown below:

4Interfaces
4 Server Admin Game State
3 Admin Set Round Time
¥ Admin Set Remaining Time
¥ Admin Get Round Time
M Admin Get Remaining Time

© 2020 — Talos Interactive

Now, to implement the four functions. This is where the C++ getters and setters we made earlier
come into play.
The two setters are implementable Events in the EventGraph of the BP_GameState class. Add them

as shown below:

\Sﬂ ‘ und Time

© Event Admin Set Round Time - | .
From Server Admin Game State Interface *+ Cast To ShooterGameMode L. Target s Shooter Game Mode
[» » » D
New Round Time @ / @ Object Cast Failed > / @ Target

As Shooter Game Mode @ @ New Round Time
! ! §§ Game ﬂm /

Return Value @

© Event Admin Set Remaining Time t)% W

From Server Admin Game State Interface k Target is Shooter Game State

» » D
New Remaining Time @ \ C» Target m
@ New Remaining Time

The two getters are functions instead, as they return a value. First, the Round Time setter:

8 Retun Node

= Admin Get Round Time {»+ Cast To ShooterGameMode
»P—0> » »
@ Object Cast Failed > @ Return Value
As Shooter Game Mode @ !: E; EE'F Time
W / \ jetis Shooter Game Mode /
Return Value @ @ Target Return Value @
And then the Remaining time setter:
~ - A | ~
¥ Admin Get Remaining Time ¥ Return Node

@ Return Value
a Eg Eemallm'ﬁml e /

Return Value @

© 2020 — Talos Interactive

GAME MODE AND .INI SETTINGS

Last but not least, your BP_GameMode class settings need to be modified to use the newly created
BP classes, as shown here:

e GameState is set to BP_GameState 4 Classes

b Playercontrouer Is set to Game Session Class GameSession v [RO IS 4

Game State Class & D 4+ 9
L] In your game settings, make sure
y g) 8s Player Controller Class & D 4+ 2
BP_GameMode is the new default, or

set in the world override of the map you want to test this in.

BP_PlayerController

e Finally, in the DefaultGame.ini, replace the PlatformPlayerControllerClass in line 9 and the
Gamelnstance class in the DefaultEngine.ini in line 221.

9 I ;PlatformPlayerControllerClass=Class"/Script/ShooterGame.ShooterPlayerController’
10 I PlatformPlayerControllerClass=Class "Game/Blueprints/GameMode/BP_PlayerController.BP_PlayerController_C'
11

221 I ;GameInstanceClass=/Script/ShooterGame.ShooterGameInstance
222 I GameInstanceClass=/Game/Blueprints/GameMode/BP_GameInstance.BP_GameInstance C

This last step will show you how to call the TIServerAdmin UMG menu. This implementation is “quick
and dirty” and it is strongly encouraged to integrate it into your own in-game menu structure
instead. However, for a proof of concept the following will do.

Let’s open ShooterGame’s PlayerPawn Blueprint and add this bit of logic:

0D “F AddtoViewport J
Zm ~+ Cast To BP_PlayerController (F Sequence. (%= Create BP Server Admin Ul Widget Taiget is User Widget
Pressed I » P——— P Theop ———— » » D
Released [@ Object Cast Failed [Then1 Class

Retum Value @ ® Target
BP Server Admin~
Key As BP Player Controller @ Addpin + ¥

@ Owning Player

E ;r:el is Pawn /

O Target Return Value @ [Setinput Mode U Only o
—_———
[SET
» »—» D
@ Player Controller show Mouse Cursor [
@ InWidget to Focus ® Target
In Mouse Lock Mode

Grab the Pawn’s Controller, cast it to the PlayerController class and then place a CreateWidget node.
In the Create Widget node, reference BP_ServerAdmin_UlI as class.

This logic will create and open the TIServerAdmin menu when you press the key “M” while you are
playing in game.

Important note: This plugin is made for a server-client environment. Make sure to tick the “Run
Dedicated Server” checkbox when testing the functionality in the editor!

© 2020 — Talos Interactive

Now, with all the logic done, it’s time to configure the GameMode.ini to store the TIServerAdmin
configuration. This is where your game’s server owners will be able to create their own
configurations, prior to using the plugin.

Note: In one of the future releases, the plugin will get its own configuration file, but for the time
being, it’s using the game.ini.

a7

48 [ServerAdmin]

49 ;3 Every server admin can conveniently be added here.

50 ; Enter their 64bit SteamID to the list of ServerAdminSteamIDs

51 ; and they will automatically be verified when they join.

52 +ServerAdminSteamID=12345678910111213

53 ;tServerAdminSteamID=12345678910111213

54 ; Use the password option if you cannot or do not want to use any of the
55 ; unique OnlineSubSystem user IDs.

56 ; Note: Adding a ServerAdminSteamlD will disable the password prompt.

57 AdminPassword="ThisIsMyPassword"

58 ;5 Friendly Fire enabled or disabled

59 TeamKillsEnabled=1

60]] ; Team kill threshold until the TKer is punished

61 TeamKilll imit=5

62] ; Team Kill punishment: @ = kick, 1 = ban

63 TeamKillPunishment=0

nAI ; Team Kill count decay. Decreases the count of accumulated TKs per player by one per X minutes
(33 TeamKillCountDecay=1

ﬂﬁl ; Configurable path for looking up the game's maps'

67 MapsPath="/Game/Maps™

68 ;3 Maps excluded from showing up in the admin menu

69 ; such as the entry map or submaps that live in the Game/Maps folder

; Note: It is recommended to store sublevels in a separate folder of Game/Maps/.
71 ; That will automatically exclude them from the map list in the admin menu.
72 +ExcludedMaps="ShooterEntry”

73 +ExcludedMaps="Highrise_ Audio™

74 +ExcludedMaps="Highrise_Gameplay”

75 +ExcludedMaps="Highrise Lights"

76 +ExcludedMaps="Highrise_Meshing"”

77 +ExcludedMaps="Highrise_ Vista"

78 +ExcludedMaps="Highrise_Collisions_Temp™

70' ; Map Rotation List. Add all maps that are supposed to run by default here
80 +MapRotation="/Game/Maps/Highrise™

81 +MapRotation="/Game/Maps/Sanctuary™

1. The first entries are the server admins’ UniqueNetIDs. In the case of using the Steam
subsystem they are the 64bit version of the player’s SteamlIDs

2. The second entry is the optional password. Keep in mind three things:

a. The password method is only active if no Admin IDs are defined, otherwise it’s
inactive

b. The password is transmitted unencrypted, so it’s potentially unsafe and it’s highly
recommended to only use it in networks that you trust.

c. Providing neither a password nor Steam IDs will make the TIServerAdmin controls
accessible to any player in your server. This is useful for debug purposes but should
not be used on a public server.

3. The third, fourth and fifth entry are the setting for the TeamKill feature being enabled, the TK
limit beyond which the punishment kicks in, the type of punishment and the TK counter
decay per minute.

4. The Maps path defines the location on your server, where the plugin should look for maps to
display as options to switch to. Note, the plugin does not check folders recursively.

5. The Excluded maps list holds all maps and sublevels that you do not want to show up in the
map selection.

6. And last but not least, your server’s map rotation is defined at the bottom. The server will
indefinitely loop through those maps.

© 2020 - Talos Interactive

